Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
ASAIO J ; 67(9): 982-988, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1393493

ABSTRACT

A significant proportion of patients with COVID-19 develop acute respiratory distress syndrome (ARDS) with high risk of death. The efficacy of veno-venous extracorporeal membrane oxygenation (VV-ECMO) for COVID-19 on longer-term outcomes, unlike in other viral pneumonias, is unknown. In this study, we aimed to compare the 6 month mortality of patients receiving VV-ECMO support for COVID-19 with a historical viral ARDS cohort. Fifty-three consecutive patients with COVID-19 ARDS admitted for VV-ECMO to the Royal Brompton Hospital between March 17, 2020 and May 30, 2020 were identified. Mortality, patient characteristics, complications, and ECMO parameters were then compared to a historical cohort of patients with non-COVID-19 viral pneumonia. At 6 months survival was significantly higher in the COVID-19 than in the non-COVID-19 viral pneumonia cohort (84.9% vs. 66.0%, p = 0.040). Patients with COVID-19 had an increased Murray score (3.50 vs. 3.25, p = 0.005), a decreased burden of organ dysfunction (sequential organ failure score score [8.76 vs. 10.42, p = 0.004]), an increased incidence of pulmonary embolism (69.8% vs. 24.5%, p < 0.001) and in those who survived to decannulation longer ECMO runs (19 vs. 11 days, p = 0.001). Our results suggest that survival in patients supported with EMCO for COVID-19 are at least as good as those treated for non-COVID-19 viral ARDS.


Subject(s)
COVID-19/mortality , Extracorporeal Membrane Oxygenation/adverse effects , Pneumonia/mortality , Respiratory Distress Syndrome/therapy , Adult , Aged , Female , Humans , Male , Middle Aged , Pneumonia/virology , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
2.
Thorax ; 76(1): 83-85, 2021 01.
Article in English | MEDLINE | ID: covidwho-1066941

ABSTRACT

Although nasal continuous positive airway pressure or non-invasive ventilation is used to manage some patients with acute lung injury due to COVID-19, such patients also demonstrate increased minute ventilation which makes it hard, if the device is used in line with the manufacturer's instructions, to achieve adequate oxygen delivery. In addition, if a hospital contains many such patients, then it is possible that the oxygen requirements will exceed infrastructure capacity. Here we describe a simple modification of two exemplar ventilators normally used for domiciliary ventilation, which substantially increased the fraction of inspired oxygen (FiO2) delivered.


Subject(s)
COVID-19/therapy , Off-Label Use , Pandemics , Respiration, Artificial/instrumentation , SARS-CoV-2 , Ventilators, Mechanical , COVID-19/epidemiology , Equipment Design , Humans
3.
Thorac Cardiovasc Surg ; 69(3): 259-262, 2021 04.
Article in English | MEDLINE | ID: covidwho-927094

ABSTRACT

On April 17, 2020, a coronavirus disease 2019 (COVID-19) webinar was held by selected international experts in the field of intensive care and specialized respiratory ECMO centers from Germany, Italy, Spain, and the United Kingdom, which was hosted by the German Heart Centre Berlin/Charité. The experts shared their experience about the treatment of 42 patients with severe acute respiratory failure requiring venovenous extracorporeal membrane oxygenation (VV-ECMO). Patients were predominantly male (male-to-female ratio: 3:1), with a mean age of 51 years (range: 25-73 years). VV-ECMO support was indicated in 30% of the ventilated COVID-19 patients. The mean time requiring mechanical ventilation was 16.5 days, with a mean duration of ECMO support of 10.6 days. At the time of the webinar, a total of 17 patients had already been decannulated from ECMO, whereas six died with multiorgan failure. 18 patients remained on ECMO, with their final outcomes unknown at the time of the webinar. Hospital mortality was 25.6% (as of April 17, 2020). In this respect, VV-ECMO, provided by expert centers, is a recognized and validated mode of advanced life-support during the recent COVID-19 pandemic with good outcomes.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , Clinical Decision-Making , Europe , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Recovery of Function , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , Videoconferencing
4.
Am J Respir Crit Care Med ; 202(5): 690-699, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-646801

ABSTRACT

Rationale: Clinical and epidemiologic data in coronavirus disease (COVID-19) have accrued rapidly since the outbreak, but few address the underlying pathophysiology.Objectives: To ascertain the physiologic, hematologic, and imaging basis of lung injury in severe COVID-19 pneumonia.Methods: Clinical, physiologic, and laboratory data were collated. Radiologic (computed tomography (CT) pulmonary angiography [n = 39] and dual-energy CT [DECT, n = 20]) studies were evaluated: observers quantified CT patterns (including the extent of abnormal lung and the presence and extent of dilated peripheral vessels) and perfusion defects on DECT. Coagulation status was assessed using thromboelastography.Measurements and Results: In 39 consecutive patients (male:female, 32:7; mean age, 53 ± 10 yr [range, 29-79 yr]; Black and minority ethnic, n = 25 [64%]), there was a significant vascular perfusion abnormality and increased physiologic dead space (dynamic compliance, 33.7 ± 14.7 ml/cm H2O; Murray lung injury score, 3.14 ± 0.53; mean ventilatory ratios, 2.6 ± 0.8) with evidence of hypercoagulability and fibrinolytic "shutdown". The mean CT extent (±SD) of normally aerated lung, ground-glass opacification, and dense parenchymal opacification were 23.5 ± 16.7%, 36.3 ± 24.7%, and 42.7 ± 27.1%, respectively. Dilated peripheral vessels were present in 21/33 (63.6%) patients with at least two assessable lobes (including 10/21 [47.6%] with no evidence of acute pulmonary emboli). Perfusion defects on DECT (assessable in 18/20 [90%]) were present in all patients (wedge-shaped, n = 3; mottled, n = 9; mixed pattern, n = 6).Conclusions: Physiologic, hematologic, and imaging data show not only the presence of a hypercoagulable phenotype in severe COVID-19 pneumonia but also markedly impaired pulmonary perfusion likely caused by pulmonary angiopathy and thrombosis.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Lung/blood supply , Pneumonia, Viral/complications , Pulmonary Circulation/physiology , Vascular Diseases/etiology , Adult , Aged , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Tomography, X-Ray Computed , Vascular Diseases/diagnosis , Vascular Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL